기본 콘텐츠로 건너뛰기

nginx.conf


user www-data;
worker_processes auto;
pid /run/nginx.pid;
include /etc/nginx/modules-enabled/*.conf;

events {
worker_connections 768;
# multi_accept on;
}

http {

##
# Basic Settings
##

sendfile on;
tcp_nopush on;
types_hash_max_size 2048;
client_max_body_size 10M; # Set client upload size = 10Mbyte
# server_tokens off;

# server_names_hash_bucket_size 64;
# server_name_in_redirect off;

include /etc/nginx/mime.types;
default_type application/octet-stream;

##
# SSL Settings
##

ssl_protocols TLSv1 TLSv1.1 TLSv1.2 TLSv1.3; # Dropping SSLv3, ref: POODLE
ssl_prefer_server_ciphers on;

##
# Logging Settings
##

access_log /var/log/nginx/access.log;
error_log /var/log/nginx/error.log;

##
# Gzip Settings
##

gzip on;

# gzip_vary on;
# gzip_proxied any;
# gzip_comp_level 6;
# gzip_buffers 16 8k;
# gzip_http_version 1.1;
# gzip_types text/plain text/css application/json application/javascript text/xml application/xml application/xml+rss text/javascript;

##
# Virtual Host Configs
##

include /etc/nginx/conf.d/*.conf;
include /etc/nginx/sites-enabled/*;
}

#mail {
# # See sample authentication script at:
# # http://wiki.nginx.org/ImapAuthenticateWithApachePhpScript
#
# # auth_http localhost/auth.php;
# # pop3_capabilities "TOP" "USER";
# # imap_capabilities "IMAP4rev1" "UIDPLUS";
#
# server {
# listen localhost:110;
# protocol pop3;
# proxy on;
# }
#
# server {
# listen localhost:143;
# protocol imap;
# proxy on;
# }
#}

이 블로그의 인기 게시물

Blogger

코드 하이라이트 사이트 http://hilite.me/ 코드 <!-- 나만의 공간 --> <style id='daru_css' type='text/css'> .code {      overflow: auto;      height: 200px;      background-color: rgb(239,239,239);      border-radius: 10px;      padding: 5px 10px; } .code::-webkit-scrollbar-thumb {      background-color: grey;      border: 1px solid transparent;      border-radius: 10px;      background-clip: padding-box;   } .code::-webkit-scrollbar {      width: 15px; } </style> <!-- 나만의 공간 -->

Python Sklearn make_blobs

from sklearn.datasets import make_blobs 예제 X, y = make_blobs(n_samples=500, centers=3, n_features=2, random_state=0) # 500개의 점을 3개로 모이게 한다, 변수는 2개, 무작위 상태는 0 X.shape, y.shape # ((500, 2), (500,)) plt.scatter(X[:,0],X[:,1],c=y,s=5) plt.show() # 학습 데이터 나누기 from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=.25, random_state=0) x_train.shape, x_test.shape, y_train.shape, y_test.shape # ((375, 2), (125, 2), (375,), (125,)) # 지도 학습 하기 from sklearn.linear_model import LogisticRegression logisticReg = LogisticRegression(max_iter=5000) # 기본 반복 100 logisticReg.fit(x_train, y_train) # 추정하기 pred = logisticReg.predict(X) # 결정계수 logisticReg.score(x_test, y_test) # 0.92 # 한글 깨짐 없이 나오게 설정 from matplotlib import rcParams # 인코딩 폰트 설정 rcParams['font.family'] = 'New Gulim' rcParams['font.size'] = 10 # 산점도 plt.figure(figsize=(10,4)) plt.subplot(1,2, 1) plt.scatter(X[:,0],X[:,1],c=y) plt.title('정답') plt.su...

Python 문법

제곱 c = c**2; 주석 # 주석 함수 # 함수 형식 def hello(): # 함수 선언     print("여기는 함수") # 함수 실행문 hello() # 함수 호출 #결과: 여기는 함수 def add(a,b): # 매개변수에 자료형이 필요없다     c = a+b     print(f"{a} + {b} = {c}") add(3,5) #결과 : 3 + 5 = 8 if문 if a > b:     print("a가 큽니다") 객체의 정보 dir(객체) 객체의 주소 id(객체) 생략 if 'a' == 'a':     pass # 생략 else:     pass # 생략 enumerate for i,v in enumerate(range(20, 26)):     print(i,v) display display(df)