기본 콘텐츠로 건너뛰기

Spring-Python 예제


예제1
%%writefile app.py
#app.py
from flask import Flask
app = Flask(__name__)
# 한글 깨짐 방지
app.config['JSON_AS_ASCII'] = False

print('Flask running~')

@app.route('/')
def index():
    return '<h1>Hello World</h1>'

@app.route('/json')
def json():
    import json
    data = {}
    data['empno'] = 31
    data['ename'] = 'Smith'
    data['phone'] = '010-2547-8459'
    js_str = json.dumps(data)
    return js_str

@app.route('/login',methods=['GET','POST'])
def login():
    from flask import request
    if request.method == 'GET':
        userid = request.args.get('userid')
        pwd = request.args.get('pwd')
        import json
        result = {}
        if (userid == 'smith' and pwd == '1234'):
            result['result'] = '로그인 성공'
        else:
            result['result'] = '로그인 실패'
        return json.dumps(result, ensure_ascii=False).encode('utf8')
    elif request.method == 'POST':
        userid = request.form['userid']
        pwd = request.form['pwd']

@app.route('/calc/<int:num>/<int:num2>') # int, float, str
def calc(num,num2):
    return '%s + %s = %s'%(num,num2,num+num2)

app.run(host='0.0.0.0',debug=True,port=7878)

예제2
%%writefile app2.py
from flask import Flask
app = Flask(__name__)

import json

import pickle
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
X_train = [[1],[2],[3],[4]]
y_train = [1,2,3,4]
clf.fit(X_train,y_train)

with open('app2.pkl','wb') as fin:
    pickle.dump(clf, fin)
    
with open('app2.pkl','rb') as fout:
    clf_loaded = pickle.load(fout)

@app.route('/predict/<int:num>')
def predict(num):
    X_test = [[num]]
    y_pred = clf_loaded.predict(X_test)
    return str(y_pred)

app.run(host='0.0.0.0',debug=True,port=7878)

예제3
%%writefile app3.py
from flask import Flask
app = Flask(__name__)

####################################################
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import pandas as pd

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = pd.read_csv(url, names=names)

array = dataframe.values # array([[],...])

X = array[:,0:8] # 0 ~ 7번 열
y = array[:,8] # 8번 열

# Split data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Create logistic regression object
clf = LogisticRegression(max_iter=1000)

# Train the model using the training sets
clf.fit(X_train, y_train)

# Predict the labels of test set
y_pred = clf.predict(X_test)

# Evaluate the accuracy of the model
acc = accuracy_score(y_test, y_pred)
print("Accuracy: {:.2f}%".format(acc*100))

# save the model to a file using pickle
import pickle
filename = 'logistic_regression_model.pkl'
with open(filename, 'wb') as file:
    pickle.dump(clf, file)
#########################

@app.route('/model/logreg/')
def load_model():
    # load the model from the file
    with open(filename, 'rb') as file:
        clf_loaded = pickle.load(file)
        pred = clf_loaded.predict([[6.,98.,58.,33.,190.,34.,0.43,43.]])
        return str(pred)
    
from flask import request
from flask import jsonify
@app.route('/add/json',methods=['POST'])
def add_json():
    json_data = request.get_json()
    print('서버에서 받은 데이터:',json_data)
    return jsonify(json_data)

app.run(host='0.0.0.0', debug=True, port=7878)

이 블로그의 인기 게시물

React 시작하기

App.js import Hello from './comp/Hello' ; function App() {   return (     < div className = "App" >       < Hello />     </ div >   ); } export default App; export default App; Hello.js import './Hello.css' ; function Hello() {   return (     < h1 > Hello, World! </ h1 >   ); } export default Hello; Hello.css h1 {   color : red; }

Python 인공신경망 추천 시스템(회귀)

예제 # 인공신경망을 이용한 추천 시스템 # - 순차형(Sequential) 신경망 생성법 # - 함수형(Functional) 신경망 생성법 # - 지금까지 나온 추천 방식 중에서 가장 좋은 성능 # - Regression 방식으로 분석가능 # - 영화의 평점 정보(userid, movieid, rating) # - 이용자는 영화에 대한 취향이 모두 다르다 # - 영화는 다양한 장르가 혼합되어 있다 # - 이용자는 자신의 취향에 맞는 영화에 높은 rating을 제시함 # - 어떤 이용자에게 어떤 장르의 영화를 추천할 것인가? # __call__() 함수를 가진 클래스는 파이썬 함수 callable(클래스)를 사용하면 True를 반환한다 from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Dense, Embedding, Input input = Input(shape=(1,)) # 함수형 신경망 생성법 hidden1 = Dense(2, activation='relu')(input) # Dense(2, activation='relu')__call__() hidden2 = Dense(2, activation='relu')(hidden1) # callable.object callable(Dense) # __call__ 함수가 있으면 True, 없으면 False # Using Functional API from keras.models import Sequential from keras.layers import * model = Sequential() model.add(Input(shape=(3,))) # Input tensor model.add(Dense(4)) # hidden layer 1 model.add(Dense(units=4)) # hidden layer 2 model.add(Dense(units=1)) # ou...

Python Sklearn make_regression

from sklearn.datasets import make_regression import matplotlib.pyplot as plt X, y = make_regression(n_samples=250, n_features=1, noise=50, random_state=2) plt.scatter(X,y, s=2) plt.show() from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split # 한글 깨짐 없이 나오게 설정 from matplotlib import rcParams # 인코딩 폰트 설정 rcParams['font.family'] = 'New Gulim' rcParams['font.size'] = 10 x_train, x_test, y_train, y_test = train_test_split(X,y, test_size=.20, random_state=0) x_train.shape, x_test.shape, y_train.shape, y_test.shape # 모델 생성 model = LinearRegression() # 학습하기 model.fit(x_train, y_train) # 가중치, 편향치 구하기 model.coef_, model.intercept_ # (array([90.11061494]), 2.4224269924448585) # 결정 계수 model.score(x_train, y_train) # 0.789267454050733 # 추정 pred = model.predict(x_test) # 산점도 plt.scatter(x_test,y_test) plt.plot(x_test, pred, 'r-') plt.show() # 추정 model.predict([[3.0]]) # 학습할 때 주는 데이터의 형식을 따른다 # x의 최소값, 최대값을 계수와 절편을 사용하여 ...