Softmax : 다중분류
예제
# softmax : 다중분류
# 분류 클래스 수만큼의 값이 산출됨
# 산출된 값을 합하면 1이 됨
#!pip install tensorflow
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
np.random.seed(0)
tf.random.set_seed(3)
from sklearn.model_selection import train_test_split
import pandas as pd
df = pd.read_csv('housing.csv',delim_whitespace=True,header=None)
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.00632 | 18.0 | 2.31 | 0 | 0.538 | 6.575 | 65.2 | 4.0900 | 1 | 296.0 | 15.3 | 396.90 | 4.98 | 24.0 |
1 | 0.02731 | 0.0 | 7.07 | 0 | 0.469 | 6.421 | 78.9 | 4.9671 | 2 | 242.0 | 17.8 | 396.90 | 9.14 | 21.6 |
2 | 0.02729 | 0.0 | 7.07 | 0 | 0.469 | 7.185 | 61.1 | 4.9671 | 2 | 242.0 | 17.8 | 392.83 | 4.03 | 34.7 |
3 | 0.03237 | 0.0 | 2.18 | 0 | 0.458 | 6.998 | 45.8 | 6.0622 | 3 | 222.0 | 18.7 | 394.63 | 2.94 | 33.4 |
4 | 0.06905 | 0.0 | 2.18 | 0 | 0.458 | 7.147 | 54.2 | 6.0622 | 3 | 222.0 | 18.7 | 396.90 | 5.33 | 36.2 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
501 | 0.06263 | 0.0 | 11.93 | 0 | 0.573 | 6.593 | 69.1 | 2.4786 | 1 | 273.0 | 21.0 | 391.99 | 9.67 | 22.4 |
502 | 0.04527 | 0.0 | 11.93 | 0 | 0.573 | 6.120 | 76.7 | 2.2875 | 1 | 273.0 | 21.0 | 396.90 | 9.08 | 20.6 |
503 | 0.06076 | 0.0 | 11.93 | 0 | 0.573 | 6.976 | 91.0 | 2.1675 | 1 | 273.0 | 21.0 | 396.90 | 5.64 | 23.9 |
504 | 0.10959 | 0.0 | 11.93 | 0 | 0.573 | 6.794 | 89.3 | 2.3889 | 1 | 273.0 | 21.0 | 393.45 | 6.48 | 22.0 |
505 | 0.04741 | 0.0 | 11.93 | 0 | 0.573 | 6.030 | 80.8 | 2.5050 | 1 | 273.0 | 21.0 | 396.90 | 7.88 | 11.9 |
506 rows × 14 columns
dataset = df.values
X = dataset[:,:13]
y = dataset[:,13]
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state=0)
X_train.shape # (354, 13)
X_test.shape # (152, 13)
y_train.shape # (354,)
y_test.shape # (152,)
model = Sequential()
model.add(Dense(30,input_dim=13, activation='relu'))
model.add(Dense(20,activation='relu')) # 히든레이어
model.add(Dense(10,activation='relu')) # 히든레이어
model.add(Dense(15,activation='relu')) # 히든레이어
model.add(Dense(1)) # 결과
model.summary()
Model: "sequential_1" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_2 (Dense) (None, 30) 420 dense_3 (Dense) (None, 20) 620 dense_4 (Dense) (None, 10) 210 dense_5 (Dense) (None, 15) 165 dense_6 (Dense) (None, 1) 16 ================================================================= Total params: 1,431 Trainable params: 1,431 Non-trainable params: 0 _________________________________________________________________
# Loss함수 'adam' 사용
model.compile(loss='mse', optimizer='adam')
# 학습내역
history = model.fit(X_train,y_train,epochs=200,batch_size=10) # epoch : 반복횟수, batch_size : 10개의 입력을 처리하고 손실함수를 기반으로 가중치 조정, 현재 1개 입력은 13의 input을 말한다
# 인공신경망이 계산한 집값
model.predict(X_test).flatten()
# 학습내역
history.history['loss']
# 학습내역 그래프
예제2
# Tensorflow를 사용한 지도학습, 다중분류
# 회귀(Regression), 분류(Classification)
# 회귀 : 출력 레이어의 뉴런의 수가 1개
# 분류 : 출력 레이어의 뉴런의 수가 클래스의 수와 같이 설정
# 출력함수 : 회귀(linear), 분류(softmax)
# 손실함수 : crossentropy(Log Loss)
# binary_crossentropy, categorical_crossentropy, sparse_crossentropy
# 회원분류, 비지도학습
# 이미지 분류 : CNN, 지도학습
# 오브젝트 탐지
# Tensorflow를 이용한 다중분류의 예
# iris 품종 분류
# 분류 클래스의 수 : 3
# feature의 수 : 4
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
iris = load_iris()
iris.keys() # 'data', 'target', 'target_names'
data = iris['data']
data.shape # (150, 4)
target = iris['target']
target.shape # (150,)
target_names = iris['target_names']
target_names.shape # (3,)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(data, target, test_size=.2, random_state=0)
X_train.shape # (120, 4)
X_test.shape # (30, 4)
y_train.shape # (120,)
y_test.shape # (30,)
# 신경망
model = Sequential() # 빈 신경망
model.add(Dense(10,input_dim=4,activation='relu'))
model.add(Dense(20,activation='relu'))
model.add(Dense(30,activation='relu'))
model.add(Dense(20,activation='relu'))
model.add(Dense(10,activation='relu'))
model.add(Dense(3,activation='softmax')) # 다중분류는 Softmax
model.summary()
Model: "sequential_3" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_6 (Dense) (None, 10) 50 dense_7 (Dense) (None, 20) 220 dense_8 (Dense) (None, 30) 630 dense_9 (Dense) (None, 20) 620 dense_10 (Dense) (None, 10) 210 dense_11 (Dense) (None, 3) 33 ================================================================= Total params: 1,763 Trainable params: 1,763 Non-trainable params: 0 _________________________________________________________________
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy']) # optimizer : 경사하강법의 종류, loss : 손실함수, 'sparse' : OneHotEncoding 방식으로 처리, metrics : 측정도구
# 학습
hist = model.fit(X_train, y_train, epochs=500, batch_size=10, validation_split=0.05) # epochs : 500번 반복, batch_size : input 10번 당 가중치 조정, validation_split :
hist.history.keys() # dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy'])
loss = hist.history['loss']
acc = hist.history['accuracy']
vloss = hist.history['val_loss']
vacc = hist.history['val_accuracy']
import matplotlib.pyplot as plt
plt.figure(figsize=(5,2))
plt.plot(loss,'r--',label='loss')
plt.plot(acc,'g.',label='accuracy')
plt.plot(vloss,'y--',label='val_loss')
plt.plot(vacc,'b.',label='val_accuracy')
plt.legend()
plt.show()
model.evaluate(X_test, y_test)
1/1 [==============================] - 0s 29ms/step - loss: 0.0353 - accuracy: 1.0000
# 추정
pred = model.predict(X_test)
pred.shape # (30, 3)
pred
sum(pred[0])
pred[0].argmax() # 2
target_names[2] # 'virginica'
예제3
# 신경망을 이용한 회귀 실습
# 손실함수 : mse
# Optimizer : adam
# 활성함수 : activation='relu'
# 출력함수 : activation='linear'
# 출력 레이어의 뉴런 수 : 1
def get_y(x):
return 4 * x + 7
x = np.random.randint(-100, 100, 500)
y = get_y(x)
y.shape # (500,)
X = x.reshape(-1,1)
X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=.2, random_state=0)
X_train.shape, X_test.shape, y_train.shape, y_test.shape # ((400,), (100,), (400,), (100,))
model = Sequential() # 빈 신경망
model.add(Dense(1,input_dim=1)) # 기본 activation='linear' 생략가능
model.add(Dense(10))
model.add(Dense(15))
model.add(Dense(1))
model.summary()
model.compile(loss='mse', optimizer='adam',metrics=['mae']) # mae(Mean Absolute Error) : 오차를 가지고 정확도를 계산
hist = model.fit(X_train,y_train,epochs=100,batch_size=10,validation_split=.1)
hist.history.keys() # dict_keys(['loss', 'mae', 'val_loss', 'val_mae'])
loss = hist.history['loss']
mae = hist.history['mae']
val_loss = hist.history['val_loss']
val_mae = hist.history['val_mae']
plt.plot(loss,label='loss')
plt.plot(mae,label='mae')
plt.plot(val_loss,label='val_loss')
plt.plot(val_mae,label='val_mae')
plt.legend()
plt.show()
# 테스트
get_y(-50) # -193
model.predict([[-50]]) # -193.00005
model.evaluate(X_test, y_test) # [7.292737524977611e-10, 2.1238327462924644e-05]