기본 콘텐츠로 건너뛰기

Python Sklearn, 외부 정보 지도학습 후 정밀도 구하기


%%writefile app3.py
from flask import Flask
app = Flask(__name__)

#######################################
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import pandas as pd

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = pd.read_csv(url, names=names)

array = dataframe.values # array([[],...])

X = array[:,0:8] # 0 ~ 7번 열
y = array[:,8] # 8번 열

# Split data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Create logistic regression object
clf = LogisticRegression(max_iter=1000)

# Train the model using the training sets
clf.fit(X_train, y_train)

# Predict the labels of test set
y_pred = clf.predict(X_test)

# Evaluate the accuracy of the model
acc = accuracy_score(y_test, y_pred)
print("Accuracy: {:.2f}%".format(acc*100))

# save the model to a file using pickle
import pickle
filename = 'logistic_regression_model.pkl'
with open(filename, 'wb') as file:
    pickle.dump(clf, file)
#################

@app.route('/model/logreg/')
def load_model():
    # load the model from the file
    with open(filename, 'rb') as file:
        clf_loaded = pickle.load(file)
        pred = clf_loaded.predict([[6.,98.,58.,33.,190.,34.,0.43,43.]])
        return str(pred)

app.run(host='0.0.0.0', debug=True, port=7878)

이 블로그의 인기 게시물