기본 콘텐츠로 건너뛰기

Python Sklearn, 외부 정보 지도학습 후 정밀도 구하기


%%writefile app3.py
from flask import Flask
app = Flask(__name__)

#######################################
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import pandas as pd

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = pd.read_csv(url, names=names)

array = dataframe.values # array([[],...])

X = array[:,0:8] # 0 ~ 7번 열
y = array[:,8] # 8번 열

# Split data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Create logistic regression object
clf = LogisticRegression(max_iter=1000)

# Train the model using the training sets
clf.fit(X_train, y_train)

# Predict the labels of test set
y_pred = clf.predict(X_test)

# Evaluate the accuracy of the model
acc = accuracy_score(y_test, y_pred)
print("Accuracy: {:.2f}%".format(acc*100))

# save the model to a file using pickle
import pickle
filename = 'logistic_regression_model.pkl'
with open(filename, 'wb') as file:
    pickle.dump(clf, file)
#################

@app.route('/model/logreg/')
def load_model():
    # load the model from the file
    with open(filename, 'rb') as file:
        clf_loaded = pickle.load(file)
        pred = clf_loaded.predict([[6.,98.,58.,33.,190.,34.,0.43,43.]])
        return str(pred)

app.run(host='0.0.0.0', debug=True, port=7878)

이 블로그의 인기 게시물

Python Sklearn make_regression

from sklearn.datasets import make_regression import matplotlib.pyplot as plt X, y = make_regression(n_samples=250, n_features=1, noise=50, random_state=2) plt.scatter(X,y, s=2) plt.show() from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split # 한글 깨짐 없이 나오게 설정 from matplotlib import rcParams # 인코딩 폰트 설정 rcParams['font.family'] = 'New Gulim' rcParams['font.size'] = 10 x_train, x_test, y_train, y_test = train_test_split(X,y, test_size=.20, random_state=0) x_train.shape, x_test.shape, y_train.shape, y_test.shape # 모델 생성 model = LinearRegression() # 학습하기 model.fit(x_train, y_train) # 가중치, 편향치 구하기 model.coef_, model.intercept_ # (array([90.11061494]), 2.4224269924448585) # 결정 계수 model.score(x_train, y_train) # 0.789267454050733 # 추정 pred = model.predict(x_test) # 산점도 plt.scatter(x_test,y_test) plt.plot(x_test, pred, 'r-') plt.show() # 추정 model.predict([[3.0]]) # 학습할 때 주는 데이터의 형식을 따른다 # x의 최소값, 최대값을 계수와 절편을 사용하여 ...

Javascript on 함수

엔터키 감지하기 <input type="password" onkeypress="func(event)" /> function func(event) {      if(event.keyCode == 13) { // keyCode 13은 엔터이다           alert("엔터를 입력했습니다.");     }     if (event.tartget.value == 13) {          alert("엔터를 입력했습니다.");     } }

Grid 정렬

  .container { display : grid ; gap : 22px ; width : 1000px ; grid-template-columns : repeat ( auto-fit , 150px ); margin : auto ; justify-content : center ; } .container {      display : grid ; gap : 22px ; grid-template-columns : repeat ( auto-fit , minmax ( 250px , 1fr )); }