기본 콘텐츠로 건너뛰기

인공신경망


뉴런(Neuron)

활성 함수(Activation)
활성화와 비활성화를 결정한다

직선의 방정식
aX + b = y

곡선의 방정식
W1X1 + W2X2 + W3X3 + ... + b(Bias) = y

손실함수(Loss Function)
추정과 실제의 차이를 계산하는 함수
고차함수로 계산함
Label : 아주 많아짐
Prediction : 추정(실제값과 추정값을 비교해서 최적의 값을 찾아냄)
MSE(각각의 에러의 제곱의 평균,Mean Square Error) : 회귀
MAE
Binary_CrossEntropy : 
Categorical_CrossEntropy

확률적 경사하강법(SGD : Stochastic Gradiant Descendent)
가중치를 올려서 기울기 0(최적의 가중치)을 찾는 방법

최적화(Optimizer) : 학습률을 조정하는 것
학습률을 최적화 해준다
SGD(Stochastic Gradient Descent, 확률적 경사하강법)
Adam : 가장 좋은 옵티마이저

오차 역전파(Backpropagation)
과적합, 과소적합
순정파, 역전파

이 블로그의 인기 게시물

Python Sklearn make_regression

from sklearn.datasets import make_regression import matplotlib.pyplot as plt X, y = make_regression(n_samples=250, n_features=1, noise=50, random_state=2) plt.scatter(X,y, s=2) plt.show() from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split # 한글 깨짐 없이 나오게 설정 from matplotlib import rcParams # 인코딩 폰트 설정 rcParams['font.family'] = 'New Gulim' rcParams['font.size'] = 10 x_train, x_test, y_train, y_test = train_test_split(X,y, test_size=.20, random_state=0) x_train.shape, x_test.shape, y_train.shape, y_test.shape # 모델 생성 model = LinearRegression() # 학습하기 model.fit(x_train, y_train) # 가중치, 편향치 구하기 model.coef_, model.intercept_ # (array([90.11061494]), 2.4224269924448585) # 결정 계수 model.score(x_train, y_train) # 0.789267454050733 # 추정 pred = model.predict(x_test) # 산점도 plt.scatter(x_test,y_test) plt.plot(x_test, pred, 'r-') plt.show() # 추정 model.predict([[3.0]]) # 학습할 때 주는 데이터의 형식을 따른다 # x의 최소값, 최대값을 계수와 절편을 사용하여 ...

Javascript on 함수

엔터키 감지하기 <input type="password" onkeypress="func(event)" /> function func(event) {      if(event.keyCode == 13) { // keyCode 13은 엔터이다           alert("엔터를 입력했습니다.");     }     if (event.tartget.value == 13) {          alert("엔터를 입력했습니다.");     } }

Grid 정렬

  .container { display : grid ; gap : 22px ; width : 1000px ; grid-template-columns : repeat ( auto-fit , 150px ); margin : auto ; justify-content : center ; } .container {      display : grid ; gap : 22px ; grid-template-columns : repeat ( auto-fit , minmax ( 250px , 1fr )); }