기본 콘텐츠로 건너뛰기

Python math

# 가져오기
import math

# 설명
dir(math)
['__doc__',
 '__loader__',
 '__name__',
 '__package__',
 '__spec__',
 'acos',
 'acosh',
 'asin',
 'asinh',
 'atan',
 'atan2',
 'atanh',
 'ceil',
 'comb',
 'copysign',
 'cos',
 'cosh',
 'degrees',
 'dist',
 'e',
 'erf',
 'erfc',
 'exp',
 'expm1',
 'fabs',
 'factorial',
 'floor',
 'fmod',
 'frexp',
 'fsum',
 'gamma',
 'gcd',
 'hypot',
 'inf',
 'isclose',
 'isfinite',
 'isinf',
 'isnan',
 'isqrt',
 'lcm',
 'ldexp',
 'lgamma',
 'log',
 'log10',
 'log1p',
 'log2',
 'modf',
 'nan',
 'nextafter',
 'perm',
 'pi',
 'pow',
 'prod',
 'radians',
 'remainder',
 'sin',
 'sinh',
 'sqrt',
 'tan',
 'tanh',
 'tau',
 'trunc',
 'ulp']

# 제곱
math.pow(3,2) # 9, 3의 2승

# 루트
math.sqrt(2) # 1.4142135623730951

# 절대값
math.abs(-2) # 절대값

# 전체가 True면 True 아니면 False
math.all([0,1,2,3]) # False

# radians 호도법
# 1 라디안은 반지름의 길이를 원의 둘레에 맞추면 나오는 각
math.radians(1) # 0.017453292519943295

# sine
# 사인 : 사변에 대한 대변의 비
# 사인 비 : 사변 길이 분의 대변의 길이

# 큰 수 표현, 수학 공학에서 주로 쓰임
math.sin(math.radians(90)) # 1.0, 180(도) = (파이)(라디안)
math.sin(math.radians(45)) # 0.7071067811865476
math.cos(0) # 1.0

이 블로그의 인기 게시물

React 시작하기

App.js import Hello from './comp/Hello' ; function App() {   return (     < div className = "App" >       < Hello />     </ div >   ); } export default App; export default App; Hello.js import './Hello.css' ; function Hello() {   return (     < h1 > Hello, World! </ h1 >   ); } export default Hello; Hello.css h1 {   color : red; }

Python 인공신경망 추천 시스템(회귀)

예제 # 인공신경망을 이용한 추천 시스템 # - 순차형(Sequential) 신경망 생성법 # - 함수형(Functional) 신경망 생성법 # - 지금까지 나온 추천 방식 중에서 가장 좋은 성능 # - Regression 방식으로 분석가능 # - 영화의 평점 정보(userid, movieid, rating) # - 이용자는 영화에 대한 취향이 모두 다르다 # - 영화는 다양한 장르가 혼합되어 있다 # - 이용자는 자신의 취향에 맞는 영화에 높은 rating을 제시함 # - 어떤 이용자에게 어떤 장르의 영화를 추천할 것인가? # __call__() 함수를 가진 클래스는 파이썬 함수 callable(클래스)를 사용하면 True를 반환한다 from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Dense, Embedding, Input input = Input(shape=(1,)) # 함수형 신경망 생성법 hidden1 = Dense(2, activation='relu')(input) # Dense(2, activation='relu')__call__() hidden2 = Dense(2, activation='relu')(hidden1) # callable.object callable(Dense) # __call__ 함수가 있으면 True, 없으면 False # Using Functional API from keras.models import Sequential from keras.layers import * model = Sequential() model.add(Input(shape=(3,))) # Input tensor model.add(Dense(4)) # hidden layer 1 model.add(Dense(units=4)) # hidden layer 2 model.add(Dense(units=1)) # ou...

Python Sklearn make_regression

from sklearn.datasets import make_regression import matplotlib.pyplot as plt X, y = make_regression(n_samples=250, n_features=1, noise=50, random_state=2) plt.scatter(X,y, s=2) plt.show() from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split # 한글 깨짐 없이 나오게 설정 from matplotlib import rcParams # 인코딩 폰트 설정 rcParams['font.family'] = 'New Gulim' rcParams['font.size'] = 10 x_train, x_test, y_train, y_test = train_test_split(X,y, test_size=.20, random_state=0) x_train.shape, x_test.shape, y_train.shape, y_test.shape # 모델 생성 model = LinearRegression() # 학습하기 model.fit(x_train, y_train) # 가중치, 편향치 구하기 model.coef_, model.intercept_ # (array([90.11061494]), 2.4224269924448585) # 결정 계수 model.score(x_train, y_train) # 0.789267454050733 # 추정 pred = model.predict(x_test) # 산점도 plt.scatter(x_test,y_test) plt.plot(x_test, pred, 'r-') plt.show() # 추정 model.predict([[3.0]]) # 학습할 때 주는 데이터의 형식을 따른다 # x의 최소값, 최대값을 계수와 절편을 사용하여 ...