기본 콘텐츠로 건너뛰기

오류 Cannot invoke "jakarta.servlet.http.HttpSession.getServletContext()" because "session" is null

오류
java.lang.NullPointerException: Cannot invoke "jakarta.servlet.http.HttpSession.getServletContext()" because "session" is null
at com.ezen.demo.ws.HttpSessionConfig.modifyHandshake(HttpSessionConfig.java:17) ~[classes/:na]
at org.apache.tomcat.websocket.server.UpgradeUtil.doUpgrade(UpgradeUtil.java:227) ~[tomcat-embed-websocket-10.1.4.jar:10.1.4]
at org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:78) ~[tomcat-embed-websocket-10.1.4.jar:10.1.4]
at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:185) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:158) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.springframework.web.filter.RequestContextFilter.doFilterInternal(RequestContextFilter.java:100) ~[spring-web-6.0.3.jar:6.0.3]
at org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:116) ~[spring-web-6.0.3.jar:6.0.3]
at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:185) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:158) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.springframework.web.filter.FormContentFilter.doFilterInternal(FormContentFilter.java:93) ~[spring-web-6.0.3.jar:6.0.3]
at org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:116) ~[spring-web-6.0.3.jar:6.0.3]
at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:185) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:158) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.springframework.web.filter.CharacterEncodingFilter.doFilterInternal(CharacterEncodingFilter.java:201) ~[spring-web-6.0.3.jar:6.0.3]
at org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:116) ~[spring-web-6.0.3.jar:6.0.3]
at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:185) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:158) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:177) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:97) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:542) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:119) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:92) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:78) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:357) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.coyote.http11.Http11Processor.service(Http11Processor.java:400) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.coyote.AbstractProcessorLight.process(AbstractProcessorLight.java:65) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.coyote.AbstractProtocol$ConnectionHandler.process(AbstractProtocol.java:859) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.doRun(NioEndpoint.java:1734) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.tomcat.util.net.SocketProcessorBase.run(SocketProcessorBase.java:52) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.tomcat.util.threads.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1191) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.tomcat.util.threads.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:659) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61) ~[tomcat-embed-core-10.1.4.jar:10.1.4]
at java.base/java.lang.Thread.run(Thread.java:833) ~[na:na]

내용
/** ServerEndPoint 클래스(웹소켓 서버)에서 접근할 수 있는 설정자 클래스 */
public class HttpSessionConfig extends Configurator {
@Override
public void modifyHandshake(
/* 아래의 config 에 저장한 내용은 ServerEndPoint 클래스에 전달된다 */
ServerEndpointConfig config, HandshakeRequest request, HandshakeResponse response) {
HttpSession session = (HttpSession) request.getHttpSession();
ServletContext context = session.getServletContext();

/* 위에서 구한 HttpSession 객체의 참조를 config에 저장한다 */
config.getUserProperties().put("session", session);
// 아래처럼 다수개의 값도 저장 가능
config.getUserProperties().put("context", context);
}
}

해결
@WebListener
public class RequestListener implements ServletRequestListener {

    @Override
    public void requestDestroyed(ServletRequestEvent servletRequestEvent) {
    }

    @Override
    public void requestInitialized(ServletRequestEvent servletRequestEvent) {
        ((HttpServletRequest)servletRequestEvent.getServletRequest()).getSession();
    }
}
@SpringBootApplication
@ServletComponentScan
public class Application {

    public static void main(String[] args) {
        SpringApplication.run(Application.class, args);
    }
}
출처:https://stackoverflow.com/questions/20240591/websocket-httpsession-returns-null

추가
웹소켓
- Thymeleaf, Websocket
- HttpSession 전달(Controller -> WebSocket)
- Interceptor 방식으로 ServletContext 전달
- page, request, session, application
- application : 웹서버에 한개만 존재
- application = ServletContext
- Controller에서 ServletContext에 HttpSession의 참조를 저장
- 인터셉터를 통해 ServletContext를 WebSocket으로 전달
- WebSocket에서는 WebSocketSession을 통해서 전달된 속성 값을 추출할 수 있다
- WebSocket에서는 먼저 ServletContext를 추출하고 ServletContext를 통해 HttpSession객체를 추출할 수 있다.

클래스 4개
- Controller : 로그인, ServletContext객체에 HttpSession객체를 저장
- Configurer : @Configuration, WebSocketHandler 등록, Interceptor 등록
설정파일
- pom.xml : dependency추가

이 블로그의 인기 게시물

React 시작하기

App.js import Hello from './comp/Hello' ; function App() {   return (     < div className = "App" >       < Hello />     </ div >   ); } export default App; export default App; Hello.js import './Hello.css' ; function Hello() {   return (     < h1 > Hello, World! </ h1 >   ); } export default Hello; Hello.css h1 {   color : red; }

Python 인공신경망 추천 시스템(회귀)

예제 # 인공신경망을 이용한 추천 시스템 # - 순차형(Sequential) 신경망 생성법 # - 함수형(Functional) 신경망 생성법 # - 지금까지 나온 추천 방식 중에서 가장 좋은 성능 # - Regression 방식으로 분석가능 # - 영화의 평점 정보(userid, movieid, rating) # - 이용자는 영화에 대한 취향이 모두 다르다 # - 영화는 다양한 장르가 혼합되어 있다 # - 이용자는 자신의 취향에 맞는 영화에 높은 rating을 제시함 # - 어떤 이용자에게 어떤 장르의 영화를 추천할 것인가? # __call__() 함수를 가진 클래스는 파이썬 함수 callable(클래스)를 사용하면 True를 반환한다 from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Dense, Embedding, Input input = Input(shape=(1,)) # 함수형 신경망 생성법 hidden1 = Dense(2, activation='relu')(input) # Dense(2, activation='relu')__call__() hidden2 = Dense(2, activation='relu')(hidden1) # callable.object callable(Dense) # __call__ 함수가 있으면 True, 없으면 False # Using Functional API from keras.models import Sequential from keras.layers import * model = Sequential() model.add(Input(shape=(3,))) # Input tensor model.add(Dense(4)) # hidden layer 1 model.add(Dense(units=4)) # hidden layer 2 model.add(Dense(units=1)) # ou...

Python Sklearn make_regression

from sklearn.datasets import make_regression import matplotlib.pyplot as plt X, y = make_regression(n_samples=250, n_features=1, noise=50, random_state=2) plt.scatter(X,y, s=2) plt.show() from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split # 한글 깨짐 없이 나오게 설정 from matplotlib import rcParams # 인코딩 폰트 설정 rcParams['font.family'] = 'New Gulim' rcParams['font.size'] = 10 x_train, x_test, y_train, y_test = train_test_split(X,y, test_size=.20, random_state=0) x_train.shape, x_test.shape, y_train.shape, y_test.shape # 모델 생성 model = LinearRegression() # 학습하기 model.fit(x_train, y_train) # 가중치, 편향치 구하기 model.coef_, model.intercept_ # (array([90.11061494]), 2.4224269924448585) # 결정 계수 model.score(x_train, y_train) # 0.789267454050733 # 추정 pred = model.predict(x_test) # 산점도 plt.scatter(x_test,y_test) plt.plot(x_test, pred, 'r-') plt.show() # 추정 model.predict([[3.0]]) # 학습할 때 주는 데이터의 형식을 따른다 # x의 최소값, 최대값을 계수와 절편을 사용하여 ...